Skip to content

Model Integration Guide

This guide explains how to integrate different AI models into the AI Assistant System.

Overview

The AI Assistant System supports integration with various AI models, from cloud-based APIs to locally deployed models. This flexibility allows you to choose the best model for your specific use case.

Supported Model Types

  1. Language Models: Text generation, understanding, and completion
  2. Embedding Models: Text vectorization for semantic search
  3. Image Generation Models: Text-to-image generation
  4. Code Generation Models: Specialized for code completion and generation
  5. Multimodal Models: Handling text, images, and other modalities

Model Integration Architecture

┌─────────────────┐    ┌──────────────────┐    ┌─────────────────┐
│   Application   │───▶│  Model Manager   │───▶│   AI Models     │
└─────────────────┘    └──────────────────┘    └─────────────────┘
                              │
                              ▼
                       ┌──────────────────┐
                       │  Model Registry  │
                       └──────────────────┘

Language Model Integration

OpenAI Models

from app.core.model_integration import ModelManager, OpenAIModel

# Initialize model manager
model_manager = ModelManager()

# Register OpenAI model
openai_model = OpenAIModel(
    name="gpt-4",
    api_key="your-api-key",
    model_params={
        "temperature": 0.7,
        "max_tokens": 1000,
        "top_p": 0.9
    }
)
model_manager.register_model(openai_model)

# Use the model
response = await model_manager.generate(
    model_name="gpt-4",
    prompt="Explain quantum computing",
    context="You are a physics teacher"
)

Anthropic Models

from app.core.model_integration import AnthropicModel

claude_model = AnthropicModel(
    name="claude-3-opus",
    api_key="your-api-key",
    model_params={
        "temperature": 0.5,
        "max_tokens": 2000
    }
)
model_manager.register_model(claude_model)

Local Models (Ollama)

from app.core.model_integration import OllamaModel

ollama_model = OllamaModel(
    name="llama2",
    base_url="http://localhost:11434",
    model_params={
        "temperature": 0.8,
        "num_predict": 1000
    }
)
model_manager.register_model(ollama_model)

Embedding Model Integration

OpenAI Embeddings

from app.core.model_integration import OpenAIEmbeddingModel

embedding_model = OpenAIEmbeddingModel(
    name="text-embedding-ada-002",
    api_key="your-api-key"
)
model_manager.register_embedding_model(embedding_model)

# Generate embeddings
text = "The AI Assistant System is powerful"
embeddings = await model_manager.generate_embeddings(
    model_name="text-embedding-ada-002",
    text=text
)

Hugging Face Embeddings

from app.core.model_integration import HuggingFaceEmbeddingModel

hf_embedding_model = HuggingFaceEmbeddingModel(
    name="sentence-transformers/all-MiniLM-L6-v2",
    model_path="/path/to/model"
)
model_manager.register_embedding_model(hf_embedding_model)

Image Generation Model Integration

DALL-E Integration

from app.core.model_integration import DALLEModel

dalle_model = DALLEModel(
    name="dall-e-3",
    api_key="your-api-key",
    model_params={
        "size": "1024x1024",
        "quality": "standard",
        "style": "vivid"
    }
)
model_manager.register_image_model(dalle_model)

# Generate image
image_url = await model_manager.generate_image(
    model_name="dall-e-3",
    prompt="A futuristic AI assistant robot",
    n=1
)

Stable Diffusion Integration

from app.core.model_integration import StableDiffusionModel

sd_model = StableDiffusionModel(
    name="stable-diffusion-v1-5",
    model_path="/path/to/stable-diffusion",
    model_params={
        "height": 512,
        "width": 512,
        "num_inference_steps": 50
    }
)
model_manager.register_image_model(sd_model)

Code Generation Model Integration

GitHub Copilot Integration

from app.core.model_integration import CopilotModel

copilot_model = CopilotModel(
    name="copilot",
    api_key="your-github-token",
    model_params={
        "temperature": 0.1,
        "max_tokens": 500
    }
)
model_manager.register_code_model(copilot_model)

# Generate code
code = await model_manager.generate_code(
    model_name="copilot",
    prompt="Create a Python function to calculate factorial",
    language="python"
)

Model Routing and Selection

Intelligent Model Selection

from app.core.model_integration import ModelRouter

router = ModelRouter()

# Define routing rules
router.add_rule(
    name="complex_reasoning",
    condition=lambda ctx: ctx.complexity > 0.8,
    model="claude-3-opus"
)

router.add_rule(
    name="code_generation",
    condition=lambda ctx: ctx.task_type == "code",
    model="gpt-4"
)

router.add_rule(
    name="simple_tasks",
    condition=lambda ctx: ctx.complexity < 0.5,
    model="gpt-3.5-turbo"
)

# Use router
context = RequestContext(
    task_type="code",
    complexity=0.9
)
selected_model = router.select_model(context)

Load Balancing

from app.core.model_integration import LoadBalancer

load_balancer = LoadBalancer(
    strategy="round_robin",
    models=["gpt-4", "claude-3-opus", "gpt-3.5-turbo"]
)

# Get next available model
model = load_balancer.get_next_model()
response = await model_manager.generate(
    model_name=model.name,
    prompt= prompt
)

Model Performance Optimization

Caching

from app.core.model_integration import CachedModel

# Wrap model with caching
cached_model = CachedModel(
    base_model=openai_model,
    cache_ttl=3600,  # 1 hour
    cache_key_generator=lambda prompt, **kwargs: f"{prompt[:100]}_{hash(str(kwargs))}"
)
model_manager.register_model(cached_model)

Batch Processing

from app.core.model_integration import BatchProcessor

batch_processor = BatchProcessor(
    model_name="gpt-4",
    batch_size=10,
    timeout=30
)

# Process multiple prompts
prompts = [
    "What is machine learning?",
    "Explain neural networks",
    "How does AI work?"
]
responses = await batch_processor.process_batch(prompts)

Model Quantization (for local models)

from app.core.model_integration import QuantizedModel

quantized_model = QuantizedModel(
    base_model=ollama_model,
    quantization_bits=8,  # 8-bit quantization
    device="cuda"
)
model_manager.register_model(quantized_model)

Model Monitoring and Metrics

Performance Metrics

from app.core.model_integration import ModelMetrics

metrics = ModelMetrics()

@metrics.track
async def generate_with_metrics(prompt, model_name):
    start_time = time.time()
    response = await model_manager.generate(
        model_name=model_name,
        prompt=prompt
    )

    metrics.record_execution(
        model_name=model_name,
        execution_time=time.time() - start_time,
        token_usage=response.usage
    )

    return response

Quality Metrics

from app.core.model_integration import QualityMetrics

quality_metrics = QualityMetrics()

# Evaluate response quality
def evaluate_response(prompt, response, expected):
    score = quality_metrics.calculate_score(
        prompt=prompt,
        response=response,
        expected=expected
    )
    return score

Model Security and Safety

Content Filtering

from app.core.model_integration import ContentFilter

content_filter = ContentFilter()

@content_filter.filter
async def safe_generate(prompt, model_name):
    # Check input for harmful content
    if content_filter.is_harmful(prompt):
        raise ValueError("Harmful content detected")

    # Generate response
    response = await model_manager.generate(
        model_name=model_name,
        prompt=prompt
    )

    # Check output for harmful content
    if content_filter.is_harmful(response.text):
        return "I cannot provide a response to this request."

    return response

Model Access Control

from app.core.model_integration import AccessControl

access_control = AccessControl()

# Define access policies
access_control.add_policy(
    name="premium_models",
    models=["gpt-4", "claude-3-opus"],
    required_permissions=["premium"]
)

access_control.add_policy(
    name="free_models",
    models=["gpt-3.5-turbo"],
    required_permissions=["basic"]
)

# Check access before model use
if access_control.check_access(user_permissions, model_name):
    response = await model_manager.generate(
        model_name=model_name,
        prompt=prompt
    )

Model Versioning

Model Version Management

from app.core.model_integration import ModelVersionManager

version_manager = ModelVersionManager()

# Register model versions
version_manager.register_version(
    model_name="gpt-4",
    version="v1",
    model=gpt4_v1_model
)

version_manager.register_version(
    model_name="gpt-4",
    version="v2",
    model=gpt4_v2_model
)

# Use specific version
response = await model_manager.generate(
    model_name="gpt-4",
    model_version="v1",
    prompt=prompt
)

A/B Testing

from app.core.model_integration import ABTestManager

ab_test = ABTestManager()

# Set up A/B test
ab_test.create_test(
    name="gpt4_vs_claude",
    model_a="gpt-4",
    model_b="claude-3-opus",
    traffic_split=0.5  # 50% traffic to each
)

# Get model for request
model_name = ab_test.get_model_for_request(user_id)
response = await model_manager.generate(
    model_name=model_name,
    prompt=prompt
)

Best Practices

  1. Choose the Right Model: Select models based on your specific needs
  2. Implement Caching: Cache responses to improve performance and reduce costs
  3. Monitor Performance: Track metrics to optimize model usage
  4. Implement Fallbacks: Have backup models for reliability
  5. Security First: Implement proper content filtering and access control
  6. Version Control: Manage model versions for consistency
  7. Cost Optimization: Balance quality with cost considerations
  8. Regular Updates: Keep models updated for better performance

Troubleshooting

Common Issues

  1. Model Not Responding: Check API keys and network connectivity
  2. Slow Response Times: Consider caching or using faster models
  3. Poor Quality: Adjust model parameters or try different models
  4. High Costs: Implement caching and use cost-effective models
  5. Rate Limits: Implement proper rate limiting and fallbacks

Debug Mode

Enable debug mode for detailed logging:

```python import logging logging.getLogger("app.core.model_integration").setLevel(logging.DEBUG)