Model Integration Guide¶
This guide explains how to integrate different AI models into the AI Assistant System.
Overview¶
The AI Assistant System supports integration with various AI models, from cloud-based APIs to locally deployed models. This flexibility allows you to choose the best model for your specific use case.
Supported Model Types¶
- Language Models: Text generation, understanding, and completion
- Embedding Models: Text vectorization for semantic search
- Image Generation Models: Text-to-image generation
- Code Generation Models: Specialized for code completion and generation
- Multimodal Models: Handling text, images, and other modalities
Model Integration Architecture¶
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ Application │───▶│ Model Manager │───▶│ AI Models │
└─────────────────┘ └──────────────────┘ └─────────────────┘
│
▼
┌──────────────────┐
│ Model Registry │
└──────────────────┘
Language Model Integration¶
OpenAI Models¶
from app.core.model_integration import ModelManager, OpenAIModel
# Initialize model manager
model_manager = ModelManager()
# Register OpenAI model
openai_model = OpenAIModel(
name="gpt-4",
api_key="your-api-key",
model_params={
"temperature": 0.7,
"max_tokens": 1000,
"top_p": 0.9
}
)
model_manager.register_model(openai_model)
# Use the model
response = await model_manager.generate(
model_name="gpt-4",
prompt="Explain quantum computing",
context="You are a physics teacher"
)
Anthropic Models¶
from app.core.model_integration import AnthropicModel
claude_model = AnthropicModel(
name="claude-3-opus",
api_key="your-api-key",
model_params={
"temperature": 0.5,
"max_tokens": 2000
}
)
model_manager.register_model(claude_model)
Local Models (Ollama)¶
from app.core.model_integration import OllamaModel
ollama_model = OllamaModel(
name="llama2",
base_url="http://localhost:11434",
model_params={
"temperature": 0.8,
"num_predict": 1000
}
)
model_manager.register_model(ollama_model)
Embedding Model Integration¶
OpenAI Embeddings¶
from app.core.model_integration import OpenAIEmbeddingModel
embedding_model = OpenAIEmbeddingModel(
name="text-embedding-ada-002",
api_key="your-api-key"
)
model_manager.register_embedding_model(embedding_model)
# Generate embeddings
text = "The AI Assistant System is powerful"
embeddings = await model_manager.generate_embeddings(
model_name="text-embedding-ada-002",
text=text
)
Hugging Face Embeddings¶
from app.core.model_integration import HuggingFaceEmbeddingModel
hf_embedding_model = HuggingFaceEmbeddingModel(
name="sentence-transformers/all-MiniLM-L6-v2",
model_path="/path/to/model"
)
model_manager.register_embedding_model(hf_embedding_model)
Image Generation Model Integration¶
DALL-E Integration¶
from app.core.model_integration import DALLEModel
dalle_model = DALLEModel(
name="dall-e-3",
api_key="your-api-key",
model_params={
"size": "1024x1024",
"quality": "standard",
"style": "vivid"
}
)
model_manager.register_image_model(dalle_model)
# Generate image
image_url = await model_manager.generate_image(
model_name="dall-e-3",
prompt="A futuristic AI assistant robot",
n=1
)
Stable Diffusion Integration¶
from app.core.model_integration import StableDiffusionModel
sd_model = StableDiffusionModel(
name="stable-diffusion-v1-5",
model_path="/path/to/stable-diffusion",
model_params={
"height": 512,
"width": 512,
"num_inference_steps": 50
}
)
model_manager.register_image_model(sd_model)
Code Generation Model Integration¶
GitHub Copilot Integration¶
from app.core.model_integration import CopilotModel
copilot_model = CopilotModel(
name="copilot",
api_key="your-github-token",
model_params={
"temperature": 0.1,
"max_tokens": 500
}
)
model_manager.register_code_model(copilot_model)
# Generate code
code = await model_manager.generate_code(
model_name="copilot",
prompt="Create a Python function to calculate factorial",
language="python"
)
Model Routing and Selection¶
Intelligent Model Selection¶
from app.core.model_integration import ModelRouter
router = ModelRouter()
# Define routing rules
router.add_rule(
name="complex_reasoning",
condition=lambda ctx: ctx.complexity > 0.8,
model="claude-3-opus"
)
router.add_rule(
name="code_generation",
condition=lambda ctx: ctx.task_type == "code",
model="gpt-4"
)
router.add_rule(
name="simple_tasks",
condition=lambda ctx: ctx.complexity < 0.5,
model="gpt-3.5-turbo"
)
# Use router
context = RequestContext(
task_type="code",
complexity=0.9
)
selected_model = router.select_model(context)
Load Balancing¶
from app.core.model_integration import LoadBalancer
load_balancer = LoadBalancer(
strategy="round_robin",
models=["gpt-4", "claude-3-opus", "gpt-3.5-turbo"]
)
# Get next available model
model = load_balancer.get_next_model()
response = await model_manager.generate(
model_name=model.name,
prompt= prompt
)
Model Performance Optimization¶
Caching¶
from app.core.model_integration import CachedModel
# Wrap model with caching
cached_model = CachedModel(
base_model=openai_model,
cache_ttl=3600, # 1 hour
cache_key_generator=lambda prompt, **kwargs: f"{prompt[:100]}_{hash(str(kwargs))}"
)
model_manager.register_model(cached_model)
Batch Processing¶
from app.core.model_integration import BatchProcessor
batch_processor = BatchProcessor(
model_name="gpt-4",
batch_size=10,
timeout=30
)
# Process multiple prompts
prompts = [
"What is machine learning?",
"Explain neural networks",
"How does AI work?"
]
responses = await batch_processor.process_batch(prompts)
Model Quantization (for local models)¶
from app.core.model_integration import QuantizedModel
quantized_model = QuantizedModel(
base_model=ollama_model,
quantization_bits=8, # 8-bit quantization
device="cuda"
)
model_manager.register_model(quantized_model)
Model Monitoring and Metrics¶
Performance Metrics¶
from app.core.model_integration import ModelMetrics
metrics = ModelMetrics()
@metrics.track
async def generate_with_metrics(prompt, model_name):
start_time = time.time()
response = await model_manager.generate(
model_name=model_name,
prompt=prompt
)
metrics.record_execution(
model_name=model_name,
execution_time=time.time() - start_time,
token_usage=response.usage
)
return response
Quality Metrics¶
from app.core.model_integration import QualityMetrics
quality_metrics = QualityMetrics()
# Evaluate response quality
def evaluate_response(prompt, response, expected):
score = quality_metrics.calculate_score(
prompt=prompt,
response=response,
expected=expected
)
return score
Model Security and Safety¶
Content Filtering¶
from app.core.model_integration import ContentFilter
content_filter = ContentFilter()
@content_filter.filter
async def safe_generate(prompt, model_name):
# Check input for harmful content
if content_filter.is_harmful(prompt):
raise ValueError("Harmful content detected")
# Generate response
response = await model_manager.generate(
model_name=model_name,
prompt=prompt
)
# Check output for harmful content
if content_filter.is_harmful(response.text):
return "I cannot provide a response to this request."
return response
Model Access Control¶
from app.core.model_integration import AccessControl
access_control = AccessControl()
# Define access policies
access_control.add_policy(
name="premium_models",
models=["gpt-4", "claude-3-opus"],
required_permissions=["premium"]
)
access_control.add_policy(
name="free_models",
models=["gpt-3.5-turbo"],
required_permissions=["basic"]
)
# Check access before model use
if access_control.check_access(user_permissions, model_name):
response = await model_manager.generate(
model_name=model_name,
prompt=prompt
)
Model Versioning¶
Model Version Management¶
from app.core.model_integration import ModelVersionManager
version_manager = ModelVersionManager()
# Register model versions
version_manager.register_version(
model_name="gpt-4",
version="v1",
model=gpt4_v1_model
)
version_manager.register_version(
model_name="gpt-4",
version="v2",
model=gpt4_v2_model
)
# Use specific version
response = await model_manager.generate(
model_name="gpt-4",
model_version="v1",
prompt=prompt
)
A/B Testing¶
from app.core.model_integration import ABTestManager
ab_test = ABTestManager()
# Set up A/B test
ab_test.create_test(
name="gpt4_vs_claude",
model_a="gpt-4",
model_b="claude-3-opus",
traffic_split=0.5 # 50% traffic to each
)
# Get model for request
model_name = ab_test.get_model_for_request(user_id)
response = await model_manager.generate(
model_name=model_name,
prompt=prompt
)
Best Practices¶
- Choose the Right Model: Select models based on your specific needs
- Implement Caching: Cache responses to improve performance and reduce costs
- Monitor Performance: Track metrics to optimize model usage
- Implement Fallbacks: Have backup models for reliability
- Security First: Implement proper content filtering and access control
- Version Control: Manage model versions for consistency
- Cost Optimization: Balance quality with cost considerations
- Regular Updates: Keep models updated for better performance
Troubleshooting¶
Common Issues¶
- Model Not Responding: Check API keys and network connectivity
- Slow Response Times: Consider caching or using faster models
- Poor Quality: Adjust model parameters or try different models
- High Costs: Implement caching and use cost-effective models
- Rate Limits: Implement proper rate limiting and fallbacks
Debug Mode¶
Enable debug mode for detailed logging:
```python import logging logging.getLogger("app.core.model_integration").setLevel(logging.DEBUG)